LOGO
Accès direct  
GDR 3368
 
 
 
 
 
 
 
 

 
<2017 November>
MoTuWeThFrSaSu
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Le Groupement de Recherche du CNRS en Electronique Organique

L’électronique organique, aussi connue sous le nom d’« électronique plastique » est l’une des composantes de l’électronique générale. À la différence de l’électronique traditionnelle, elle utilise des matériaux semi-conducteurs dont la formulation est basée sur la chimie du carbone. Ce sont les propriétés qui résultent des interactions entre un ensemble des molécules qui sont utilisées dans les applications de l’électronique organique.

Si l’on s’intéresse aux applications, l’atout de cette électronique est de permettre la réalisation d’un ensemble de fonctions opto-électroniques par des procédés grandes surfaces sur des substrats flexibles. Ainsi les systèmes réalisés par cette nouvelle électronique seront minces, légers, conformables et pourront directement être intégrés à de nombreux produits.



 Actualités 
 2017-11-03 Ateliers GDR/NANORGASOL 2017

Dernier atelier thématique GDR Electronique Organique / NANORGASOL de 2017 : Colloque SYNOHE (Synchrotron and Neutrons for Organic and Hybrid Electronics). L’objectif de cet atelier est de découvrir et/ou échanger avec des spécialiste sur des techniques grands instruments toutes susceptibles de vous aider dans vos recherches.

L’inscription de 150€ comprend également l’hébergement et les repas. Toutes les infos sont disponibles sur le lien suivant : https://synohe.sciencesconf.org/


 
 2017-11-02 [biblio] Stretchable and waterproof elastomer-coated organic photovoltaics for washable electronic textile applications

Voici un article qui montre les avancées du groupe de Takao Someya : «  Stretchable and waterproof elastomer-coated organic photovoltaics for washable electronic textile applications ». Parfait pour illustrer un cours ! 

https://www.nature.com/articles/s41560-017-0001-3

Textile-compatible photovoltaics play a crucial role as a continuous source of energy in wearable devices. In contrast to other types of energy harvester, they can harvest sufficient electricity (on the order of milliwatts) for wearable devices by utilizing the cloth itself as the platform for photovoltaics. Three features are important for textile-compatible photovoltaics, namely environmental stability, sufficient energy efficiency and mechanical robustness. However, achieving these simultaneously remains difficult because of the low gas barrier properties of ultrathin superstrates and substrates. Here, we report on ultraflexible organic photovoltaics coated on both sides with elastomer that simultaneously realize stretchability and stability in water whilst maintaining a high efficiency of 7.9%. The efficiency of double-side-coated devices decreases only by 5.4% after immersion in water for 120 min. Furthermore, the efficiency of the devices remains at 80% of the initial value even after 52% mechanical compression for 20 cycles with 100 min of water exposure.

 
 2017-11-02 International Thematic School on EXCITONICS for PHOTONIC APPLICATIONS - Les Houches School of Physics, Chamonix Mont-Blanc valley, FRANCE - April 16-27, 2018

International Thematic School on EXCITONICS for PHOTONIC APPLICATIONS

EXCITONS in LOW-DIMENSIONALITY / DISORDERED SEMICONDUCTORS AND THEIR APPLICATIONS IN THE  DETECTION and EMISSION OF LIGHT

Organic semiconductors have become important players in photonics within the last decades: they enabled flexible or printable devices, such as OLED displays or organic solar cells. But in the realm of materials that can be chemically tuned and solution-processed, there have been some newcomers in the field recently: hybrid perovskites or colloidal semiconducting nanoparticles for instance.
Besides the fact that all these materials have common applications in the emission and detection of Light, and have similar processing/characterization techniques, these are excitons who play here a central role in the light/material interaction.

Because the field is exciting and new, there is a need to make a pause and get back to fundamental questions. What are excitons in those systems? How can we characterize them and harvest them in photonic devices?

Keywords : Excitons in semiconductors, charge and exciton transport, organic semiconductors, hybrid perovskites, colloidal quantum dots, LEDs, lasers, PV cells, scintillators...

16 outstanding lecturers will cover a broad spectrum going from the theory of excitons and their characterization to the most advanced excitonic photonic devices :  

Chihaya Adachi (Kyushu University, Japan), Natalie Banerji (University of Fribourg, Switzerland), Sergei Baranovski (Marburg University, Germany), Jérôme Cornil (Mons University, Belgium), Emmanuelle Deleporte (ENS Paris Saclay, France), Vladimir Dyakonov (Würzburg University, Germany), Jacky Even (INSA Rennes, France), Mark Fox (University of Sheffield, UK), Noel Giebink (Pennsylvania State University, USA), Stéphane Kéna-Cohen (Polytechnique Montréal, Canada), Emmanuel Lhuillier (UPMC Paris, France), Xavier Marie (INSA Toulouse, France), Thuc-Quyen Nguyen (UC Santa Barbara, USA), Peter Reiss (CEA, France), Graham Turnbull (Univ. of St Andrews, UK), Richard Williams (Wake Forrest University, USA).

Les Houches School of Physics is nested at 1150 m above sea level in natural surroundings, with breathtaking views on the Mont-Blanc mountain range.

Attending a thematic school is a unique opportunity to learn, share and connect with top leaders in the field. The School is open to all researchers and PhD students without restriction of age, status or nationality. 

Application deadline (short motivation letter + abstract for a poster): January 22, 2018

For more information : http://www.sfoptique.org/pages/ecoles-thematiques/excitonics-thematic-school/

 





Tous droits réservés